
International Workshop November 2025 Fundamental Science and Applications

E-book of Abstracts

Ministry of Foreign Affairs and International Cooperation

Project funded by the Italian Ministry of Foreign Affairs and International Cooperation, grant number KR23GR06

E-book of Abstracts International Workshop-MAP project Quantum Materials and Chiral Phenomena: Fundamental Science and Applications

Centro Congressi Federico II, Napoli

27-28 November 2025

Contents

Optical signatures of spin symmetries in unconventional magnets (Julen	
$\mathbf{Ib} \mathbf{\tilde{n}ez} \mathbf{-Azpiroz}) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	1
Relativistic Spin-momentum locking in altermagnets (Carmine Autieri) .	2
A-approach in ARPES and chiral topological superconductivity in PtBi ₂	
$(\mathbf{Sergey}\ \mathbf{Borisenko})\ \ldots\ \ldots\ \ldots\ \ldots\ \ldots$	3
Imaging Twisted Electrons by Angle-Resolved Photoemission Spectroscopy	
(Maximilian Ünzelmann)	4
Electronic structure and charge-density wave modulation in monolayer	
$TiSe_2$ (Bruno Saika)	5
Tunable room-temperature nonlinear Hall effect from surfaces of elemen-	
tary bismuth thin films (Denys Makarov)	6
Hallmarks of Spin Textures for High-Harmonic Generation in two-dimensional	<u>.</u>
materials (Francesco Gabriele)	7
Three-Dimensional Polar Topology in Ferroelectric Nanoparticles (Yongsoo	
$\mathbf{Yang})$	8
Low-density superconductivity in the presence of strong spin-orbit coupling	
$(\mathbf{José\ Lorenzana})$	9
Filtering Spin and Orbital Moment in Achiral Systems (Luciano Jacopo	
$\mathbf{D'Onofrio}) \ \dots $	10
Dirac-like fermions anomalous magneto-transport in a spin-polarized oxide	
two-dimensional electron system (Yu Chen)	11
Skyrmions: from hadrons to magnetic textures (Jung Hoon Han)	12
Spintronics and Correlation Effects in Two-Dimensional Magnetic Materi-	
als: From Fe _n GeTe ₂ to p-Wave Magnets (Andrea Droghetti)	13
Magnetic and Chiral skyrmion materials (Geetha Balakrishnan)	14
Controlling the functionality of quantum materials by light (Daniele Fausti)	15
The Dual Role of Killer Jahn–Teller Modes and Screw Symmetry in Ferro-	
magnetic Two-Dimensional Hybrid Perovskites (Alessandro Stroppa)	16
Towards the twisting of nickelate membranes (${\bf Daniele\ Preziosi}$)	17
Author Index	18

Optical signatures of spin symmetries in unconventional magnets

Julen Ibáñez-Azpiroz

Centro de Física de Materiales (CSIC-UPV/EHU), 20018, Donostia-San Sebastían, Spain

Spin symmetries have been an important ingredient for the recent classification of unconventional magnets [1,2]. In this talk, I will focus on the relation between spin symmetries and the photoresponse of unconventional magnets. Firstly, I will use a 2D variant of the Lieb lattice [3] to study the impact of spin-orbit coupling on spin symmetry predictions of the standard linear absorption of altermagnets [4]. Then, I will focus on nonlinear responses such as the shift current [5], given the close relationship of nonlinear effects to the symmetries of a material. As a concrete example, I will primarily focus on the low temperature phase of Mn₅Si₃, a material that features the two possible classes of unconventional p-wave magnetism in the form of two competing spin structures [6,7]. I will show that the dominant spin and charge photoresponse of the two structures is determined by spin symmetries rather than the conventional magnetic symmetries [8]. I will point out the main implications of this effect and propose an experimental protocol to identify the spin configuration of this promising material in photogalvanic or transport measurements.

- [1] L. Šmejkal, J. Sinova, and T. Jungwirth. Phys. Rev. X 12, 031042 (2022).
- [2] A. B. Hellenes, T. Jungwirth, J. Sinova, and L. Šmejkal. arXiv preprint arXiv:2309.01607 (2023).
- [3] D. S. Antonenko, R. M. Fernandes and J. W. Venderbos. Phys. Rev. Lett. 134, 096703 (2025).
- [4] E. Boquete, J. Sivianes, D. Hernangomez and J. Ibañez-Azpiroz. In preparation.
- [5] J. E. Sipe and A. I. Shkrebtii. Phys. Rev. B 61, 5337 (2000).
- [6] P. J. Brown, J. B. Forsyth, V. Nunez, and F. Tasset. J. Phys. Condens. Matter 4, 10025 (1992).
- [7] N. Biniskos, F. J. dos Santos, K. Schmalzl, S. Raymond, M. dos Santos Dias, J. Persson, N. Marzari, S. Blügel, S. Lounis, and T. Brückel. Phys. Rev. B 105, 104404 (2022).
- [8] J. Sivianes, F. J. dos Santos, and **J. Ibañez-Azpiroz**. Phys. Rev. Lett. 134, 196907 (2025).

Relativistic Spin-momentum locking in altermagnets

Carmine Autieri^{1,2}, Amar Fakhredine^{3,2}

 $^{1}{\rm SPIN\text{-}CNR},$ UOS Salerno, IT-84084 Fisciano (SA), Italy $^{2}{\rm International}$ Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland

³Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02668 Warsaw, Poland

Spin-momentum locking has been demonstrated to exist in altermagnets in the non-relativistic limit [1]. When spin-orbit coupling is taken into account, all altermagnets display antisymmetric exchange interactions. These interactions lead to spin canting, although the canting may vanish for certain orientations of the Néel vector. We demonstrate that when spin-canting occurs, the spin-momentum locking can evolve and change significantly. Focusing on the centrosymmetric altermagnets, we will show that the spin-momentum locking can be present and differs for all three components of the spin S_x , S_y and S_z . The combination of the three spin-momentum lockings is named relativistic spin-momentum locking. To discuss this effect, we consider two prototypical centrosymmetric altermagnets, namely the orthorhombic YVO₃ and the hexagonal MnTe, which have bulk d-wave and bulk gwave spin-momentum locking in the non-relativistic limit. For the G-type magnetic ordering of YVO₃ and Néel vector along the z-axis, the relativistic spin-momentum locking is composed of s-wave, d_{xy} -wave and d_{xz} -wave for the S_x , S_y and S_z components, respectively. As in the non-relativistic case, the relativistic spin-momentum locking is protected by rotational symmetries. In MnTe, the main component Sy of MnTe inherits the polarized charge distribution and the non-relativistic spinmomentum locking bulk g-wave, but the breaking of the C_{6z} rotational symmetry by the Néel vector lowers the symmetry from g-wave to d-wave. The relativistic spin-momentum locking for MnTe is composed of d_{xz} -wave, d_{yz} -wave and s-wave for the S_x , S_y and S_z components, respectively [2,3]. There are several orders of magnitude of difference between the size of the main spin component and the components raised by the canting. Despite this, the spectral weight of the canted components on the spin-resolved band structure is significant. Indeed, the spectral weight of the canted components is smaller but of the same order of magnitude as that of the main spin component. Finally, using Ca₂RuO₄ as a testbed, we address the challenges arising in altermagnets under an electric field that breaks inversion symmetry [4].

- [1] L. Smejkal, J. Sinova, and T. Jungwirth. Phys. Rev. X 12, 031042 (2022).
- [2] C. Autieri and A. Fakhredine. Submitted.
- [3] R. Hirakida et al. https://arxiv.org/abs/2509.20120
- [4] A. Fakhredine, C. Autieri et al. Manuscript in preparation.

A-approach in ARPES and chiral topological superconductivity in PtBi₂

Sergey Borisenko

Leibniz Institute for Solid State and Materials Research, IFW Dresden, 01069 Dresden, Germany

Topological superconductivity is a key ingredient for realizing Majorana fermions, yet intrinsic material platforms remain scarce. Using angle-resolved photoemission spectroscopy (ARPES), we have recently demonstrated that the Weyl semimetal t-PtBi₂ hosts superconductivity confined to its topological surface states, the Fermi arcs [1]. This superconductivity is unconventional, with nodal i-wave symmetry and signatures of emergent Majorana modes [2], and can be robustly detected under both laser- and synchrotron-based ARPES conditions [3]. Moreover, t-PtBi₂ fulfills the canonical criteria favorable for high-T_c superconductivity, opening the door to tuning and optimizing this exotic state [4]. These findings establish t-PtBi₂ as a rare platform where ARPES directly reveals superconductivity of topological surface states, paving the way toward intrinsic realizations of Majorana physics. I will also briefly review a newly developed A-approach in ARPES technique [5].

- [1] A. Kuibarov et al. Evidence of superconducting Fermi arcs, Nature 626, 294 (2024).
- [2] S. Changdar *et al.* Topological nodal i-wave superconductivity in PtBi₂, Nature (in press), arXiv:2507.01774.
- [3] A. Kuibarov et al. Measuring superconducting arcs by ARPES, PRB (in press), arXiv:2505.09347.
- [4] A. Kuibarov *et al.* Three prerequisites for high-temperature superconductivity in t-PtBi₂, arXiv:2509.02178.
- [5] S. Borisenko et al. The Role of A in ARPES, https://dx.doi.org/10.2139/ssrn.5356192.

Imaging Twisted Electrons by Angle-Resolved Photoemission Spectroscopy

Maximilian Ünzelmann

Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany

Owing to their wave nature, electrons in crystalline solids are usually described in momentum space, in which each point represents an electron wave that is (in real space) spread over the entire crystal. The momentum dependence of the quantum degrees of freedom associated with these wave functions leads to a variety of properties, such as spin-momentum locking in topological surface states or chiral quasi-particles in topological semimetals. In my talk, I will shed light on the k-dependent textures, in particular of spin and orbital angular momentum, in the band structure of quantum materials. Using angle-resolved photoemission spectroscopy in combination with dichroism and spin resolution, we are able to directly image these textures. On this basis, I will show recent results in which we have observed exotic topological objects, such as chiral topological charges or momentum-space vortex lines, i.e. electrons with a 'twist'.

Electronic structure and charge-density wave modulation in monolayer TiSe₂

Bruno Saika¹, Sebastian Buchberger¹, Shu Mo¹, Akhil Rajan¹, Daniel Halliday^{1,2}, Yu-Chi Yao^{1,3}, Akhil Rajan¹, Luke Rhodes¹, T. Balasubramanian⁴, C. Polley⁴, Peter Wahl¹, Phil D. C. King¹

¹SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom ²STFC Central Laser Facility, Research Complex at Harwell, Harwell Campus, Didcot OX11 OQX, United Kingdom

 3 Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187 Dresden Germany 4 MAX IV Laboratory, Lund University, Lund, Sweden

When two periodic patterns are superimposed, interference can produce new patterns with extended periodicities termed as a moiré. In two-dimensional heterostructures, Moiré superlattices can be constructed by introducing small twist angles between homobilayers or simply by stacking heterobilayers with different lattice parameters. The spatial modulation of the Moiré lattice introduces long wavelength potentials with scales far larger than typical crystal lattices, inducing the formation of band replicas associated with the periodicity of the Moiré lattice and leading to band hybridisation with flattening of the electronic states [1-2]. Under intense band flattening regime, these localized electronic states underpin the emergence of a host of strongly correlated phenomena [3-4]. In this work, we examine the interplay between charge-density waves (CDW) and the Moiré potential arising from a lattice mismatch between 2D TiSe₂ and graphite in a 2D heterostructure. Using a combination of high-resolution angle resolved photoemission spectroscopy measurements and quasi-particle interference patterns obtained from scanning tunnelling microscopy and spectroscopy, I will demonstrate that this leads to a strong modulation in the electronic, both in the occupied and unoccupied states. I will show how this can be further tuned by controlling the ground state of the TiSe₂ layer, offering new insights into the connection between Moiré and the rich many-body phases of $TiSe_2$.

- [1] R. Bistritzer, A. H. MacDonald. Proc. Natl. Acad. Sci. U.S.A. 108, 30 (2011).
- [2] F. Wu et al. Phys. Rev. Lett. 118, 147401 (2017).
- [3] Y. Cao, et al. Nature 556, 43–50 (2018).
- [4] G. Chen, et al. Nat. Phys. 15, 3 (2019).

Tunable room-temperature nonlinear Hall effect from surfaces of elementary bismuth thin films

Denys Makarov

Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany

In the past years, there is an active research of materials displaying the non-linear Hall effect with time-reversal symmetry [1-5]. From a fundamental point of view, this quantum transport effect provides a direct way to detect in nonmagnetic materials the Berry curvature – a quantity in which the geometry of the electronic wavefunctions is encoded. The nonlinear Hall effect is also at the basis of terahertz optoelectronic applications of interest for instance for sixth generation (6G) communication networks.

An appropriate material platform for such applications should satisfy a number of criteria: i) the nonlinear Hall effect should survive up to room temperature; ii) the effect should be tunable; iii) the material fabrication should be technologically relevant (simple chemical composition of the material and low-cost microstructure); iv) ideally the material should not contain toxic heavy rare-earth elements. So far, candidate materials address only partially these requirements.

Here, we discover the first material addressing all the requirements at the same time: polycrystalline bismuth thin films [6]. We demonstrate that in this elemental green (semi)metal, the room-temperature nonlinear Hall effect is generated by surface states that are characterized by a Berry curvature triple: a quantity governing a skew scattering effect that generates non-linear transverse currents. Furthermore, we also show that the strength of nonlinear Hall effect can be controlled on demand using an extrinsic classical shape effect: the geometric nonlinear Hall effect. We demonstrate this by fabricating arc-shaped bismuth Hall bars. This endows the nonlinear Hall effect of Bismuth with the tunability encountered only in low-dimensional materials at low temperatures.

To show the potential of polycrystalline Bi thin films for optoelectronic applications in the terahertz (THz) spectral domain, we have performed high harmonic generation experiments. Polycrystalline Bi thin films reveal a high efficiency of THz third-harmonic generation (THG) that reaches levels >1% at room temperature. Moreover, our material possesses a non saturating trend of the efficiency of the THz THG. This enables the use of Bi thin films for high- and wide- THz bandwidth electronics which works at high peak power and long pulses.

- [1] Z. Z. Du et al. Nonlinear Hall effects. Nature Reviews Physics 3, 744 (2021).
- [2] I. Sodemann *et al.* Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials. Phys. Rev. Lett. 115, 216806 (2015).
- [3] Q. Ma et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337 (2019).
- [4] K. Kang *et al.* Nonlinear anomalous Hall effect in few-layer WTe₂. Nature Mater. 18, 324 (2019).
- [5] P. He *et al.* Quantum frequency doubling in the topological insulator Bi₂Se₃. Nature Communications 12, 698 (2021).
- [6] P. Makushko *et al.* A tunable room-temperature nonlinear Hall effect in elemental bismuth thin films. Nature Electronics 7, 207 (2024).

Hallmarks of Spin Textures for High-Harmonic Generation in two-dimensional materials

Francesco Gabriele¹, Carmine Ortix^{2,1}, Mario Cuoco¹, Filomena Forte¹

CNR-SPIN, c/o Università di Salerno, IT-84084 Fisciano (SA), Italy

Dipartimento di Fisica "E. R. Caianiello", Universita di Salerno, IT-84084 Fisciano (SA), Italy

Spin-orbit coupling and quantum geometry are fundamental aspects in modern condensed matter physics, with their primary manifestations in momentum space being spin textures and Berry curvature when inversion symmetry is broken. In this talk, motivated by recent technological advances in laser and attosecond science, I will discuss the interplay of spin textures and Berry curvature with high-harmonic generation in two dimensional non-centrosymmetric materials, as we investigated in a recent paper [1], with an emphasis on even-order harmonics. Our analysis reveals that the emergence of finite even-order harmonics in such systems necessarily requires a broken twofold rotational symmetry in the spin texture, as well as a nontrivial Berry curvature in systems with time reversal invariance. This symmetry breaking can arise across various degrees of freedom and impact both spin textures and optical responses via spin-orbit interactions. These findings underscore the potential of high-harmonic generation as a powerful tool for exploring electronic phases with broken rotational symmetry, as well as the associated phase transitions in two-dimensional materials, and provide novel perspectives for designing symmetry-dependent nonlinear optical phenomena.

[1] F. Gabriele, C. Ortix, M. Cuoco and F. Forte. Physical Review B 112 (15), 155421 (2025).

Three-Dimensional Polar Topology in Ferroelectric Nanoparticles

Yongsoo Yang

Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Room 3302, Natural Science Building (Physics Wing, E6-2), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

In the early 2000s, it was anticipated that low-dimensional systems would exhibit unique polar structures like vortices or skyrmions, depending on boundary conditions. Some variations of these structures have been seen in experiments with epitaxially strained thin film models. However, fully understanding and categorizing these structures in ferroelectric nanostructures has been challenging due to the need for atomic-scale, three-dimensional polarization mapping. We present here the discovery of such structures in BaTiO₃ nanoparticles using atomic electron tomography. Our findings reveal distinct topological patterns, including size dependent transitions from single to multiple vortices, aligning with theoretical expectations. This discovery, independent of strain, expands research possibilities and offers potential for contact-free switchable toroidal moments in practical applications [1].

[1] C. Jeong et al. Nat. Commun. 15, 3887 (2024).

Low-density superconductivity in the presence of strong spin-orbit coupling

Maria N. Gastiasoro¹, Giulia Venditti², Antonio Santacesaria^{3,4}, Francesco Macheda⁵, Paolo Barone⁶, **José Lorenzana**^{3,4}

³Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
 ⁴ISC-CNR, Istituto dei Sistemi Complessi, via dei Taurini 19, 00185 Rome, Italy
 ⁵Dipartimento di Scienze e Metodi dell'Ingegneria, University of Modena and Reggio Emilia, Reggio Emilia, Italy
 ⁶SPIN-CNR Institute for Superconducting and other Innovative Materials and Devices, Area della Ricerca di Tor Vergata, Via del Fosso del Cavaliere 100, 00133 Rome, Italy

In conventional superconductors, Cooper pairs are formed in singlet states. In some materials, spin-orbit coupling (SOC) on the scale of the Fermi energy introduces entanglement between orbital and spin degrees of freedom, changing this paradigm and leading to novel effects. I will argue that SOC is essential to explain superconductivity at anomalously low densities in incipient ferroelectrics, like strontium titanate and potassium tantalate.

¹Donostia International Physics Center, Donostia-San Sebastian, Manuel Lardizabal Ibilbidea, 4, 20018 Spain
²Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland

Filtering Spin and Orbital Moment in Achiral Systems

Luciano Jacopo D'Onofrio¹, Maria Teresa Mercaldo², Wojciech Brzezicki^{3,4}, Adam Kłosiński⁴, Federico Mazzola⁵, Carmine Ortix², Mario Cuoco¹

¹CNR-SPIN, c/o Università di Salerno, IT-84084 Fisciano (SA), Italy
²Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, IT-84084 Fisciano (SA), Italy
³Institute of Theoretical Physics, Jagiellonian University, ulic, S. Łojasiewicza 11, PL-30348 Kraków, Poland
⁴International Research Centre MagTop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland

 $^5\mathrm{CNR}\text{-SPIN},$ c/o Complesso di Monte S. Angelo, IT-80126 Napoli, Italy

The control of spin and orbital angular momentum in nonmagnetic materials is commonly achieved by breaking inversion symmetry, enabling charge-to-spin conversion and spin-selective electron transport in chiral systems. In this work, we show that orbital moment filtering can also be realized in centrosymmetric systems, where electron states can be selectively manipulated to favor the transmission of electrons with a specific orientation of their orbital moment. We demonstrate that this effect arises from orbital couplings that simultaneously break mirror and rotational symmetries, and we identify the corresponding symmetry requirements for efficient orbital filtering. Furthermore, we show that atomic spin—orbit coupling within the centrosymmetric medium leads to the joint filtering of spin and orbital moments. These results allow one to identify optimal regimes for achieving highly efficient and simultaneous spin and orbital moment filtering even across achiral media.

- [1] L. J. D'Onofrio, et al. Phys. Rev. B 112, 085428 (2025).
- [2] K. Ray, et al. Science 283, 814 (1999).
- [3] S. Han, et al. Phys. Rev. Lett. 128, 176601 (2022).
- [4] X. Zhang, et al. Nat. Phys. 10, 387 (2014).

Dirac-like fermions anomalous magneto-transport in a spin-polarized oxide two-dimensional electron system

Yu Chen¹, Maria D'Antuono^{2,1}, Mattia Trama³, Daniele Preziosi⁴, Benoit Jouault⁵, Frédéric Teppe⁵, Christophe Consejo⁵, Carmine Perroni^{2,1}, Roberta Citro^{3,6}, Daniela Stornaiuolo^{2,1}, Marco Salluzzo¹

¹CNR-SPIN, Complesso Univ. Monte S. Angelo, Naples, I-80126, Italy
 ²Department of Physics, University of Naples Federico II, Naples, I-80126, Italy
 ³Department of Physics, Universitá degli studi di Salerno, Salerno, I-84084, Italy
 ⁴Institut de Physique et Chimie des Matériaux de Strasbourg, Strasbourg, F-67034, France
 ⁵Laboratoire Charles Coulomb, Université de Montpellier, Montpellier, F-34095, France
 ⁶CNR-SPIN, Via Giovanni Paolo II, 132, Salerno, I-84084, Italy

In two-dimensional electron systems (2DESs), the breaking of the inversion, timereversal and bulk crystal-field symmetries intertwines with the spin-orbit coupling (SOC), giving rise to exotic quantum phenomena. By engineering a spin-polarized oxide 2DES with Rashba-like SOC and hexagonal band warping, here we present the first report of an anomalous quantum correction to the magnetoconductance, originating from Dirac-like fermions experiencing competing weak anti-localization and weak localization back-scattering (Fig. 1(a) and ref. [1]). This phenomenology closely resembles that of gapped topological insulators [2]. The results were obtained on the 2DES formed at the epitaxially grown interfaces between (111) LaAlO₃, EuTiO₃, and SrTiO₃ single crystal, characterized by a trigonal crystal field splitting and ferromagnetism induced by Eu and Ti ions magnetic ordering [3]. Notably, the anomalous magnetoconductance disappears at the magnetic critical temperature [4], showing a direct link with the ferromagnetic order. The data are explained theoretically in a single band scenario as the combined effects of the Rashba-SOC, of the band-warping induced by the 2DES trigonal symmetry, and of the magnetic gap opening at spin-orbit induced Dirac-like point, giving rise to a non-trivial Berry phase (Fig. 1(b, c)). These findings open perspectives for the engineering of novel spin-polarized functional 2DES holding promises in spin-orbitronics and topological electronics.

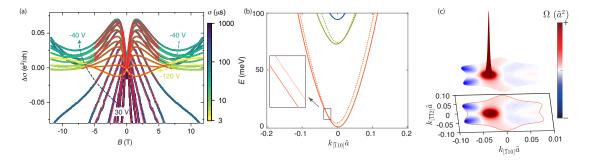


Figure 1: (a) Gate dependence of the anomalous magnetoconductance. (b) Electronic band structure in presence of in-plane magnetization. (c) The corresponding non-trivial Berry curvature with a hot-spot at the avoided crossing point.

- [1] Y. Chen, et al. Adv. Mater. 37, 2410354 (2025).
- [2] H. Z. Lu, et al. Phys. Rev. Lett. 107, 076801 (2011).
- [3] Y. Chen, et al. ACS Applied Electronic Materials 4, 3226 (2022).
- [4] D. Stornaiuolo, et al. Nature Materials 15, 278 (2016).

Skyrmions: from hadrons to magnetic textures Jung Hoon Han

Department of Physics, Sungkyunkwan University, Suwon 16419, South Korea

Skyrmions were proposed in 1961 by Tony Skyrme as a mathematical description of hadrons. From 2010, observation of a simple O(3) version of the skyrmion started to get reported in a variety of magnetic materials, which sparked keen interests in its structure, dynamics, and potential device applications. I devote a part of my talk describing the history of the theory and experimental progress in magnetic skyrmions over the past 15 years. I also present recent attempts to extend existing theories of magnetic skyrmions, which are technically classified as CP(1) skyrmions, to CP(N) skyrmions with arbitrary N.

Spintronics and Correlation Effects in Two-Dimensional Magnetic Materials: From Fe_nGeTe₂ to p-Wave Magnets

Andrea Droghetti

Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30170, Mestre, Venice, Italy

The rapid discovery of two-dimensional (2D) magnetic materials has unveiled a wealth of complex magnetic orders and exciting opportunities for spintronics. In this talk, I will briefly introduce several such materials [1], focusing in particular on the Fe_nGeTe₂ (n = 3, 4, 5) family of metallic ferromagnets and on NiI₂, a recently reported p-wave magnet [2]. Using density functional theory (DFT) combined with the non-equilibrium Green's function (NEGF) formalism, I will discuss their transport properties in tunnel magnetic junction setups. I will first demonstrate that FenGeTe₂ exhibits nearly half-metallic conductance along the out-of-plane direction, thus leading to a large tunnel magnetoresistance (TMR) [3,4]. Then, I will show how the concept of TMR can be extended from conventional ferromagnets to p-wave magnets. Finally, I will address the role of correlation effects in transport by introducing a framework that combines DFT, Dynamical Mean-Field Theory (DMFT), and NEGF. Within this framework, we show that devices based on Fe_nGeTe₂ under finite bias can enter a novel "hot-electron correlated" regime driven by electron scattering processes [5].

- [1] F. Orlando, A. Droghetti, et al. arXiv:2509.20226.
- [2] Q. Song, S. Stavrić, P. Barone, A. Droghetti, et al. Nature 642 (8066), 64-70 (2025).
- [3] A. Halder, D. Nell, A. Sihi, A. Bajaj, S. Sanvito, and A. Droghetti. Nano Lett. 24, 9221 (2024).
- [4] A. Halder, D. Nell, A. Bajaj, S. Sanvito, and A. Droghetti. arXiv preprint arXiv:2509.06823 (2025).
- [5] D. Nell, S. Sanvito, and A. Droghetti. arXiv preprint arXiv:2510.24322 (2025).

Magnetic and Chiral skyrmion materials

Geetha Balakrishnan

Department of Physics, University of Warwick, Coventry CV4 7AL, UK

Recently, there has been considerable interest in the physics of magnetic skyrmions due to their huge potential for use in spintronic devices, such as in racetrack memories and logic devices. Magnetic skyrmions are topological magnetic spin structures originally identified in the B20 class of materials. More recently, skyrmions have been found and investigated in other non-centrosymmetric classes of materials and in centrosymmetric intermetallics. To make headway in experiments to understand the basic physics of these skyrmion materials, high quality single crystals are essential. This has motivated us to embark upon a study of several classes of skyrmion materials and to explore a wide composition range of each of the family of compounds. The materials investigated range from centrosymmetric intermetallics such as Gd₂PdSi₃, GdRu₂Si₂, magnetic layered van der Waals materials such as Fe₃GeTe₂, to a large family of intercalated transition metal dichalcogenides (TMDCs) and other frustrated and topological magnets.

In this talk, I will present an overview of the materials characteristics of several of the above materials including the challenges in the synthesis of these materials using a variety of techniques at Warwick. Investigations of the effects of substitution and the resulting structural order/disorder as well as magnetic frustration on the existence of the skyrmion phase in these crystals sheds light on the origin and the tuning of the skyrmion lattices. The study of their important structure—property correlations is vital to the understanding of these materials for possible future device applications.

Controlling the functionality of quantum materials by light

Daniele Fausti

Department of Physics, Friedrich Alexander University of Erlangen-Nuremberg Department of Physics, University of Trieste

The properties of complex quantum materials (QM), such as transition metal oxides, arise from the interplay of electrons, phonons, and magnons, making them highly sensitive to external parameters like pressure, doping, fields, and temperature. This susceptibility makes QM ideal for experiments where tailored electromagnetic fields can be used to induce novel properties on ultrafast timescales [1].

I will present our efforts to manipulate material properties through light, both in free space and optical cavities. After reviewing our work on cuprates, which demonstrates the feasibility of light driven phase control [2–4], I will introduce new spectroscopic methods that merge quantum optics with time-domain techniques to probe fluctuations in non equilibrium phases [5–11].

Building on our recent demonstration that a metal-insulator transition in 1T- TaS_2 can be controlled by resonant cavity coupling [12, 13], I will outline future directions aimed at controlling by cavity electrodynamics metal-insulator transitions in Calcium Rutanate and explore new light-matter coupling regimes to bypass thermodynamic limits and dynamically sustain quantum coherence in high temperature superconductors.

- [1] C. Giannetti, et al. Advances in Physics 65.2, 58-238 (2016).
- [2] **D. Fausti**, et al. Science 331, 189-191 (2011).
- [3] F. Giusti, et al. Phys. Rev. Lett. 122, 067002 (2019).
- [4] A. Marciniak, et al. Nature Physics 17, 368–373 (2021).
- [5] F. Randi, et al. Phys. Rev. Lett. 119, 187403 (2017).
- [6] M. Esposito, et al. New J. Phys. 16 043004 (2014).
- [7] M. Esposito, et al. Nat. Comm. 6, 10249 (2015).
- [8] J. O. Tollerud, et al. PNAS March 19, 116 (12) 5383-5386 (2019).
- [9] M. Kar, et al. J. of Physics B 53, 145502 (2019).
- [10] F. Glerean, et al. Optics Letters 45, 3498 (2020).
- [11] W. Li, et al. Light: Science & Applications 11, 44 (2022).
- [12] G Jark, el al. Nature 622, 487–492 (2023).
- [13] F. Fassioli, el al. Phys. Rev. B 111, 165425 (2025).

The Dual Role of Killer Jahn–Teller Modes and Screw Symmetry in Ferromagnetic Two-Dimensional Hybrid Perovskites

Ming Wang^{1,2,7}, Muskan Nabi⁴, Xiangpeng Zhang⁶, Shiyue Sun⁵, Walter P.D. Wong², Shuaishuai Ding⁵, Branton J. Campbell³, Kai Wang⁶, Wenping Hu^{1,5}, Mariagrazia Fortino⁷, Adriana Pietropaolo⁷, Fanica Cimpoesu⁸, **Alessandro**Stroppa⁴ and Kian Ping Loh^{1,2}

¹ Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.

²Department of Chemistry, National University of Singapore, 117543.

³Department of Physics & Astronomy, Brigham Young University, Provo, UT 84602, USA.
⁴CNR-SPIN, c/o Dip.to di Scienze Fisiche e Chimiche - University of L'Aquila, Via Vetoio, Coppito (AQ), 67100, Italy.

⁵Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, School of Science, Tianjin University, Tianjin 300072, China.

⁸Institute of Physical Chemistry "I. Murgulescu" of Romanian Academy, Splaiul Independentei 202, Bucharest.

Chiral two-dimensional hybrid perovskites offer compact platforms where lattice handedness, light and spin intersect. We report the enantiomeric layered perovskite (R/S-3-fluoropyrrolidinium)2CuBr₄, in which chirality from cyclic organic cations imprints a handed distortion onto the Cu–Br framework. From an achiral tetragonal parent with undistorted CuBr₆, a cooperative Jahn-Teller-mode condensation lowers the symmetry to orthorhombic, enantiomorphic phases by splitting the high-symmetry octahedron into two orthogonal square units. We identify killer modes: selecting one Jahn–Teller eigen-direction "kills" (collapses) one of the two interpenetrating CuBr₄ squares while stabilizing the orthogonal one as a distorted, oriented square pyramid—thereby effectively transferring chirality into the framework. Choosing the perpendicular JT mode kills the other square and produces the opposite handedness, mapping directly onto the R/S domains. The chirality is quantified by a pseudo-scalar local order parameter for each CuBr₄ unit, which is positive for R, negative for S, and vanishes in the high-symmetry limit. In parallel, we reveal killer symmetry operations: the chiral, non-polar space group $P2_12_12_1$ arranges permanent molecular dipoles into two screw-related, non-collinear antiferroelectric sublattices, enforcing exact macroscopic cancellation while locking local dipoles to the inorganic handedness. This hybrid-improper pathway—non-chiral lattice modes coupled with JT distortion–removes all improper symmetries without producing net polarization, yielding efficient chirality transfer. The chiral phase displays strong natural circular dichroism (anisotropy |q| up to $3.4\cdot10^{-33}$), a chirality-dependent MCD band near 330 nm, and in-plane ferromagnetism ($T_c \approx 6$ K), establishing a single-material platform where the dual role of JT-modes and screw symmetry operations co-engineer lattice handedness, dipole textures and spin order.

⁶Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering and Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China.
⁷Dipartimento di Scienze della Salute, Università "Magna Graecia" di Catanzaro, Catanzaro 88100, Italia.

Towards the twisting of nickelate membranes

R. Fuster¹, R. Ferreira¹, G. Sanchez-Santolino¹, V. Ruoco¹, C. Leon¹, J. Santamaria¹, **Daniele Preziosi**^{1,2}

¹GFMC, Department Física de Materiales, Facultad de Física Universidad Complutense Madrid 28040, Spain ²Université de Strasbourg, CNRS, IPCMS UMR 7504, F-67034 Strasbourg, France

Stacking and twisting of released freestanding membranes has brought to light a promising path- way towards the design of materials with novel properties. Following the discovery of superconductivity in twisted graphene [1] and, more recently, in twisted transition metal dichalcogenides WSe₂ [2], the twisting approach is currently being implemented also for exfoliated membranes of transition metal oxides [3]. In particular, the appearing of a Moiré pattern, usually associated to two superposed honeycomb lattices, has been clearly demonstrated for ferroelectric BaTiO₃ twisted membranes [4]. Such Moiré patterns, accompanied by coherent chemical bonding at precise coincidence-site lattices, have the potential to reshape the electronic landscape at the twisted interface between two transition metal oxide layers, leading to the emergence of unexpected collective states. From the growth point of view, releasing freestanding oxide membranes poses a dual challenge: the functional oxide must first be grown on a suitable sacrificial-layer without compromising its intrinsic properties, while keeping the good structural match over the entire oxide stack. Here, I present our results on the use of epitaxial lift-off techniques to fabricate freestanding layers of LaNiO₃ thin films and related twisting. By using a pulsed laser deposition (PLD) technique assisted by high-energy reflection electron diffraction (RHEED), we have epitaxially grown LaNiO₃-based heterostructures on a sacrificial layer of water-soluble (Ca,Sr)₃Al₂O₆ onto SrTiO₃ substrates. A technique that is largely used in literature [5]. Structural analyses conducted via X-ray diffraction confirmed the good crystalline quality of the grown heterostructures as well as of the released membranes. Transport measurements performed by evaporating metallic top electrodes directly onto the membrane, showed similar temperature dependencies of the seed films, i.e. a metallic behavior with resistivity values within the μ Ohm cm⁻¹ range, and more importantly, with no upturn at low temperatures. This largely demonstrate the high quality of the transferred membranes mainly associate to the good growth of the oxide stack and the optimal transfer processes. Finally, I will demonstrate the impact of twist angle on the transport properties, and report about preliminary topotactic reduction experiments underwent to stabilize freestanding infinite-layer LaNiO₂ membranes.

^[1] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero. Nature 2018, 556, 43–50.

^[2] Y. Xia, Z. Han, K. Watanabe, T. Taniguchi, J. Shan, K.F. Mak. Nature 2024, DOI: 10.1038/s41586-024-08116-2.

^[3] N. Pryds, D.-S. Park, T. S. Jespersen, S. Yun. APL Materials 2024, 12, 010901.

^[4] G. Sánchez-Santolino, V. Rouco, S. Puebla, H. Aramberri, V. Zamora, M. Cabero, F. A. Cuellar, C. Munuera, F. Mompean, M. Garcia-Hernandez, A. Castellanos-Gomez, J. Íñiguez, C. Leon, J. Santamaria. Nature 2024, 626, 529–534.

^[5] D. Pesquera, A. Fernández, E. Khestanova, L. W. Martin. Journal of Physics: Condensed Matter 2022, 34, 383001.

Author Index

Autieri

Carmine, 2

Balakrishnan

Geetha, 14

Borisenko

Sergey, 3

Chen

Yu, 11

Droghetti

Andrea, 13

D'Onofrio

Luciano Jacopo, 10

Fausti

Daniele, 15

Gabriele

Francesco, 7

Han

Jung Hoon, 12

Ibáñez-Azpiroz Julen, 1

Lorenzana

José, 9

Makarov

Denys, 6

Preziosi

Daniele, 17

Saika

Bruno, 5

Stroppa

Alessandro, 16

Yang

Yongsoo, 8

Ünzelmann

Maximilian, 4