RTModel
Real-Time Microlensing Modelling by Valerio Bozza

 
OB170288
Planetary
 
Binary lens models
Model L1     χ2=5082.99    gOGLE=42.3097±20.7189

s=0.82066±0.38654    q=0.000571896±0.00143442    u0=0.00221985±0.00145575    θ=0.0718833±0.201514    ρ*=0.00214517±0.00289104    tE=519.926±163.235    t0=7852.94±0.542517    
Model L2     χ2=5108.32    gOGLE=86.3067±46.1698

s=0.975178±0.0246782    q=0.000269465±0.00100345    u0=0.000985796±0.000601551    θ=2.81382±0.559151    ρ*=0.00129801±0.000663792    tE=988.138±596.489    t0=7853.25±0.501495    
Model L3     χ2=5374.15    gOGLE=7.41629±3.55361

s=0.590264±0.247716    q=0.0128355±0.0114958    u0=0.0121688±0.00446524    θ=4.04329±0.345193    ρ*=0.0108084±0.00377728    tE=114.294±50.6148    t0=7852.75±0.314834    
Model L4     χ2=5385.96    gOGLE=8.55833±7.54726

s=1.68914±0.764945    q=0.0114071±0.00406972    u0=0.0204277±0.00383666    θ=4.04322±0.342349    ρ*=0.00953219±0.00778606    tE=129.866±109.495    t0=7853.75±2.29681    
Model L5     χ2=5460.88    gOGLE=9.44152±2.15052

s=2.45497±0.359513    q=0.0459959±0.0268122    u0=0.00977257±0.00469238    θ=6.25767±0.0415759    ρ*=0.00723539±0.00182615    tE=142.825±26.5809    t0=7840.16±7.48797