RTModel
Real-Time Microlensing Modelling by Valerio Bozza

 
OB190825
Planetary
 
Binary lens models
Model L1     χ2=21399.4    gOGLE I=2.85525±0.855172

s=1.51798±0.535615    q=0.00238676±0.00421565    u0=0.00702997±0.00203949    α=0.323693±0.109133    ρ*=0.00535909±0.00187945    tE=66.6718±16.1108    t0=8662.39±0.344675    
Model L2     χ2=21540.6    gOGLE I=5.65339±1.47643

s=0.164696±0.0422275    q=0.378115±0.397212    u0=0.00410699±0.00151174    α=4.77701±0.0448602    ρ*=0.00458859±0.00133486    tE=104.925±25.7815    t0=8662.62±0.072832    
Model L3     χ2=21792.5    gOGLE I=1.30713±1.3009

s=0.617314±0.198742    q=0.00434202±0.00511116    u0=0.0126918±0.00982813    α=4.37807±0.16551    ρ*=0.0056131±0.0091581    tE=43.6321±32.2428    t0=8662.47±0.0754943    
Binary lens models with parallax
Model X1     χ2=20930.2    gOGLE I=3.01146±1.36921

s=1.51378±0.530212    q=0.00223227±0.0035074    u0=0.00656146±0.00147131    α=0.326908±0.0898126    ρ*=0.00496006±0.00151563    tE=70.7153±28.8341    t0=8662.39±0.296194    
πE,N=1.4472±1.96216    πE,E=-1.0722±1.71478    
Model X2     χ2=20961.4    gOGLE I=2.96267±1.19728

s=0.675007±0.223369    q=0.00219517±0.00331271    u0=-0.00732147±0.00141821    α=5.96609±0.104618    ρ*=0.00504699±0.000842588    tE=69.4731±24.2643    t0=8662.51±0.0623162    
πE,N=1.46596±1.9306    πE,E=-1.12638±1.64787    
Model X3     χ2=21212.7    gOGLE I=1.16186±1.32997

s=0.614705±0.195618    q=0.00442228±0.00565137    u0=0.0132318±0.0122302    α=4.37884±0.153832    ρ*=0.00553645±0.00994168    tE=42.0557±35.4968    t0=8662.47±0.0756642    
πE,N=2.99951±5.17084    πE,E=-2.22755±3.55124