RTModel
Real-Time Microlensing Modeling by Valerio Bozza

 
GD210auw
Binary (too noisy datasets for a good model)
 
Binary lens models with parallax and orbital motion
Model O1     χ2= 6 1.09367 10    

s=0.868828±0.0206619    q=0.179396±0.0396186    u0=0.166121±0.011094    α=1.53879±0.0971681    ρ*=0.0116126±0.00190837    tE=42.4752±5.26756    t0=9287.44±0.432169    
πE,N=0.618185±0.323269    πE,E=1.53393±0.370891    (ds/dt)/s=0.00237425±0.000900209    dα/dt=0.000438041±0.00328916    w3=0.00937742±0.00164118    
Model O2     χ2= 6 1.10384 10    

s=0.869234±0.0358281    q=0.192269±0.0387207    u0=-0.167625±0.0217503    α=4.75968±0.0865343    ρ*=0.0120232±0.00165828    tE=42.0521±1.27536    t0=9287.59±0.36937    
πE,N=-0.563762±0.314709    πE,E=1.39868±0.257369    (ds/dt)/s=0.00142257±0.00132634    dα/dt=0.00196756±0.00379071    w3=0.00832937±0.00285994    
Binary lens models with parallax
Model X1     χ2= 6 1.33991 10    

s=0.870374±0.0325675    q=0.187204±0.0425133    u0=-0.161172±0.0217621    α=4.59781±0.0939492    ρ*=0.0142644±0.00196193    tE=39.9364±3.79651    t0=9287.12±0.351895    
πE,N=-0.912724±0.125199    πE,E=1.71438±0.278625    
Model X2     χ2= 6 1.36727 10    

s=0.872144±0.0121131    q=0.181191±0.0278159    u0=0.161694±0.00579335    α=1.70584±0.0591344    ρ*=0.014365±0.00180155    tE=40.183±3.4907    t0=9287.03±0.158872    
πE,N=0.781658±0.069382    πE,E=1.79806±0.262958    
Binary lens models
Model L1     χ2= 6 2.68742 10    

s=0.604337±0.0104853    q=0.384221±0.0294882    u0=0.00391803±0.0137226    α=5.0885±0.0372384    ρ*=0.0115882±0.00196052    tE=44.5562±1.51907    t0=9288.29±0.573755    
Model L2     χ2= 6 3.40787 10    

s=0.728033±0.0188883    q=0.412064±0.0960181    u0=0.12991±0.0111953    α=1.2657±0.0872042    ρ*=0.00691479±0.00131708    tE=55.7206±2.42675    t0=9288.9±0.617507